Себастьян Сеунг - Коннектом. Как мозг делает нас тем, что мы есть
Но чтобы найти весь коннектом, придется исследовать каждый коридор мозгового лабиринта. Для построения карты лишь одного кубического миллиметра мозга придется пропутешествовать через целые мили нейритов, пробраться через петабайт изображений. Столь трудоемкий и тщательный анализ жизненно необходим: поверхностный взгляд на эти снимки ничего вам не даст. Такой способ проведения научных исследований кажется очень далеким от того, чем занимался Галилей, мельком заметивший спутники Юпитера, или Левенгук, немного понаблюдавший за сперматозоидами.
Сегодня наше представление о науке как об умении увидеть, по сути, доведено до предела – благодаря современным технологиям. Более того, в наше время никакой отдельный человек не в состоянии вникнуть во все изображения, получаемые с помощью автоматизированных приборов. Но если технология породила проблему, то, быть может, технология сумеет ее решить? Возможно, компьютерам удастся проследить пути всех аксонов и дендритов благодаря этим снимкам. Если наши машины сделают за нас основную часть работы, мы все-таки сумеем увидеть коннектомы.
Проблема обработки колоссальных объемов информации стоит не только перед коннектомикой. Самый масштабный научный проект в мире, Большой адронный коллайдер (БАК), представляет собой кольцевую трубу, залегающую под землей на стометровой глубине, внутри двадцатисемикилометрового туннеля между Женевским озером и швейцарской частью Юрских гор. Коллайдер (ускоритель) разгоняет протоны до огромных скоростей и сталкивает их друг с другом: это делают, чтобы изучить силы, определяющие взаимодействие между элементарными частицами. На одном из участков этого кольца располагается гигантский аппарат – Компактный мюонный соленоид. Он способен детектировать до миллиарда столкновений частиц в секунду. Одна сотая часть этих столкновений отбирается компьютерами, которые в автоматическом режиме просеивают поступающие данные. Записываются лишь «интересные» события, однако информация течет стремительным и мощнейшим потоком, ведь каждое событие (столкновение) дает больше мегабайта данных. Отобранную информацию затем передают для анализа в сеть суперкомпьютеров, разбросанных по всему миру.
Чтобы находить в мозгу млекопитающих целые коннектомы, нам понадобятся микроскопы, способные делать снимки с такой скоростью, что поток поступающих данных окажется помощнее, чем у БАК. Сумеем ли мы анализировать эти данные с должной оперативностью? Ученые, составлявшие коннектом червя C. elegans, уже столкнулись с этой проблемой. К их большому удивлению, анализировать изображения оказалось труднее, чем получать.
* * *В середине шестидесятых годов прошлого века Сидней Бреннер, биолог родом из ЮАР, увидел возможность применения серийной электронной микроскопии для построения карты всех связей в сравнительно небольшой нервной системе. Тогда еще не придумали термин «коннектом», и Бреннер говорил о задаче «воссоздания (реконструкции) нервной системы». Он работал в кембриджской лаборатории молекулярной биологии при Совете по медицинским исследованиям. В то время он, как и его коллеги по лаборатории, осваивали C. elegans в качестве стандартного подопытного для генетических исследований. Позже червь стал первым представителем фауны, чей геном удалось полностью расшифровать. В наши дни представителей этого вида червей изучают тысячи биологов.
Бреннер полагал, что C. elegans способен помочь нам понять и биологические основы поведения живых организмов. Червь проделывает самые обыкновенные вещи – питается, совокупляется, откладывает яйца. Кроме того, он дает фиксированный отклик на определенные раздражители. Скажем, если прикоснуться к его головке, он отдернет ее и уползет. А теперь представьте, что вы обнаружили червя, неспособного на какое-то из этих стандартных проявлений. Если его потомство унаследует ту же проблему, можно предположить, что причиной этого стал некий генетический дефект, и попытаться определить, какой именно. Подобные исследования могут пролить свет на связь между генами и поведением, что само по себе было бы очень ценно. Но еще более ценные сведения можно получить, исследуя нервную систему таких червей-мутантов. Не исключено, что удалось бы выявить определенные нейроны или нервные пути, поврежденные из-за воздействия аномального гена. Перспектива всестороннего изучения червя на всех уровнях: гены, нейроны, поведение, – казалась весьма заманчивой. Но осуществление этого плана зависело от одной мелочи: у Бреннера попросту не было карты нервной системы нормального червя. А без нее трудно понять, чем отличается от нее нервная система червя-мутанта.
Бреннер знал об исследованиях немецко-американского биолога Рихарда Гольдшмидта: в начале XX века тот пытался составить карту нервной системы другого вида червей – Ascaris lumbricoides. Но у оптического микроскопа Гольдшмидта не хватило разрешающей способности для того, чтобы ясно показать отростки нейронов или выявить синапсы. Бреннер решил испробовать на C. elegans похожую методику, но с использованием более совершенной техники – электронного микроскопа и ультрамикротома.
Длина C. elegans – всего один миллиметр, этот червь гораздо меньше аскариды, которая способна вырастать до фута в человеческих внутренностях, где она иногда обитает. Чтобы нашинковать крошечную сосисочку C. elegans на слои, достаточно тонкие для электронной микроскопии, требуется сделать несколько тысяч разрезов. Николь Томсон, сотрудник Бреннера, поняла, что всего червя не удастся нарезать без ошибок и погрешностей – процесс нарезки тогда еще не был автоматизирован и представлял немалые технические трудности. Но ученым все же удалось обработать большой фрагмент червя. Бреннер решил скомбинировать изображения, полученные от сегментов нескольких разных червей. Разумная стратегия, ведь нервная система червя довольно-таки стандартизирована (мы говорили об этом раньше).
Томсон кромсала червей, пока не получила срезы для каждой области тела животного. Затем эти срезы один за другим поместили под электронный микроскоп и сделали их снимки (см. рис. 32). Благодаря этому трудоемкому процессу, в конце концов удалось получить набор снимков, представляющий всю нервную систему C. elegans. На снимках были запечатлены все синапсы червя.
Рис. 32. Срез C. elegans
Думаете, Бреннер и его команда остановились на этом? Ведь коннектом – просто совокупность всех синапсов данного существа, разве нет? На самом деле Бреннер с коллегами лишь начали с этого свою работу. Хотя синапсы оказались на виду, их организация по-прежнему оставалась скрытой от глаз человека. В сущности, ученые получили пока лишь мешок с беспорядочной кучей синапсов. Чтобы найти коннектом, следовало выяснить, к каким нейронам относятся те или иные синапсы. По одиночному снимку это сказать нельзя, ведь он показывает лишь двухмерные срезы нейронов. Однако, изучая целую последовательность изображений, показывающих поперечные сечения единичного нейрона через заданные промежутки времени, можно определить, какие синапсы принадлежат данному нейрону. И если это удастся проделать для всех нейронов, то мы как раз и отыщем коннектом. Иными словами, команда Бреннера желала узнать, какие нейроны с какими нейронами соединены.
Опять-таки, представим себе червя миниатюрной сосисочкой. Но на сей раз вообразим, будто сосиска нашпигована спагетти. Эти макаронные нити – нейроны червя, и наша задача – проследить путь каждого из них. Мы не обладаем рентгеновским зрением, поэтому придется разрезать сосиску на множество ломтиков. А потом мы разложим их рядом друг с другом и проследим за каждой нитью, сравнивая ее место на срезах – от одного среза к другому.
Чтобы хоть как-то обезопасить себя от ошибок при таком сравнении, нужно делать чрезвычайно тонкие срезы – меньше, чем диаметр макаронины. Срезы C. elegans должны быть тоньше нейронных отростков, чей диаметр порой не превышает 100 нм. Николь Томсон делала срезы толщиной около 50 нм – как раз достаточно, чтобы с уверенностью проследить путь большинства нейронных ветвей.
Джон Уайт, по образованию инженер-электрик, пытался компьютеризировать анализ получающихся снимков, однако применяемая им технология оказалась слишком примитивной. Уайту и лаборантке Эйлин Саутгейт пришлось обрабатывать снимки вручную. Поперечные сечения одного и того же нейрона помечались одним и тем же номером или буквой (см. рис. 33). Чтобы в полной мере проследить за отдельным нейроном, исследователи ставили одно и то же обозначение на поперечном сечении данного нейрона, различимом на длинной череде последовательно сделанных снимков. (Вспомним, как Тесей постепенно разматывал нить Ариадны, двигаясь в глубь Лабиринта.) А когда удалось проследить нейронные пути, исследователи, вернувшись к синапсам, определили, какие нейроны к ним относятся. Так постепенно стал вырисовываться коннектом червя C. elegans.